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Statement of Objectives 
Currently, a Russian commercially available software named IOSO is the most efficient and 

the most robust multi-objective optimization software. Similarly, the second best multi-objective 
optimization software package, modeFrontier, was also developed in a foreign country (Italy) 
and is licensed by their software company. The only multi-objective optimization software 
package that was developed in the United States and is licensed by the U.S. software company 
is Engineous. However, performance speed, robustness and overall sophistication of Engineous 
optimizer are significantly inferior in comparison to modeFrontier and especially to IOSO 
performance speed, versatility and robustness. Performance of IOSO, modeFrontier and 
Engineous multi-objective optimizers published in the open literature clearly indicates that 
IOSO, which involves concepts of neural networks, radial basis functions, and self-adapting 
response surface methodologies, requires the minimum number of the objective function 
evaluations and that it is the most versatile and robust multi-objective optimizer. 

Based on our experience in developing hybrid single-objective constrained optimization 
algorithms, the objective of this effort was to develop a hybrid multi-objective constrained 
optimization algorithm that will be robust and very fast, thus, emulating some of the main 
advantages of IOSO algorithm. 

The proposed hybrid robust multi-objective optimizer was developed to: 
1. utilize several evolutionary optimization algorithms, a set of rules for automatic switching 

among these algorithms in order to accelerate the overall convergence and avoid 
termination in a local minimum, 

2. involve development of algorithms for multi-dimensional response surfaces 
(metamodels) that are fast, accurate and robust by utilizing wavelet-based artificial 
neural networks, polynomials of radial basis functions and self-adapting maps, 

3. involve an algorithm based on Bayesian statistics (using Kalman filters, Markov chains, 
etc.) that will enhance robustness of the multi-objective optimization algorithm by 
accounting for uncertainties in the input data and in the accuracy of the evaluation 
methods for the multiple objective functions. 

The proposed hybrid evolutionary multi-objective optimization algorithm was also to be 
thoroughly tested on a number of standard test problems with two and three simultaneous 
objectives where the Pareto surface could be continuous and discontinuous. 

The proposed robust hybrid optimizer was to be programmed in such a way that it can be 
transportable to any single-processor or a parallel processor computing platform. 



Summary of Significant Results and Recommendations for Future Research 
One of the main conclusions of this research is that any new multi-objective optimization 

algorithms should involve an efficient and reliable interaction of the following: 
• A combination of several multi-objective evolutionary optimization algorithms, 
• A fast and accurate algorithm for fitting large dimensionality response surfaces using 

very small data sets, 
• An algorithm that can efficiently and reliably account for statistical noise (uncertainty) 
In other words, even the best possible multi-objective evolutionary optimization algorithm for 

one class of problems cannot be expected to perform better than any other optimization 
algorithm for all classes of optimization problems. Therefore, a combination of several 
optimization algorithms should be used in order to assure reliability of the evolutionary multi- 
objective optimization. Results presented in this report confirm that MOHO is one such 
optimization concept that works. 

Multi-dimensional response surfaces (metamodels) are found to be the key to efficiency and 
feasibility of any realistic multi-objective optimization where only small data sets are available, 
because of the very high cost of experimentally or computationally evaluating the objective 
functions. Among the several methods developed in this project for automatic generation of 
response surfaces, only those methods that offer consistently high accuracy at a relatively low 
computing cost are attractive. This is especially becoming critical with the increase in the 
number of the design variables (dimensions of a response surface) as industry is demanding 
computationally efficient and accurate response surface algorithms for optimization of realistic 
problems where numbers of design variables run into hundreds and soon into thousands. 

Comparative analysis of the three methods that were developed in this project (wavelet 
based neural networks, polynomials of radial basis functions, and multi-layer self-assembling 
concept) clearly points at the following conclusions: 

WNN (wavelet based neural networks) should be used only for relatively low dimensional 
response surface fits where the number of design variables is less than approximately 35. For 
higher dimensional response surfaces, the accuracy of this algorithm rapidly decreases and the 
computing costs rapidly increases. Also, this method does not give accurate results for small 
and scarce data sets. 

Polynomials of radial basis functions are very accurate and computationally fast for fitting 
response surfaces having up to approximately 1000 design variables. For problems having a 
larger number of design variables (dimensions of the response surface), the matrices that need 
to be solved become exceedingly ill-conditioned which leads to deterioration of accuracy of the 
fitting. At the same time, the computing costs for solving these large matrices start increasing 
rapidly. This method gives good results even for small data sets and reasonable results for 
scarce data sets. 

Response surfaces generation using a hybridized multi-layer self-organizing was developed 
with a capability to use either linear, quadratic, cubic, or quartic local polynomials at each node 
of each level of the multi-layer tree. It was found that the most accurate approach is to use a 
lower order local fitting (typically using quadratic polynomials) followed by a polynomial radial 
basis function fitting the resulting error. This method for generating multi-dimensional surfaces is 
quite computationally expensive for lower dimensionality response surfaces. However, this 
method is the most promising response surface fitting method for very large dimensionality 
surfaces as its computational cost increases approximately linearly with the number of design 
variables. This method is capable of giving good results for small and even scarce data sets. 

Uncertainty evaluation of initial data and consequently of the output results was developed 
using Bayesian statistics based on Kalman filters for linear problems and on Markov chains 
Monte Carlo (MCMC) filters for nonlinear problems. The MCMC method was proven to be 
significantly more accurate and robust, but it is computationally one order of magnitude costlier. 



Multi-Objective Hybrid Optimization (MOHO) With Automatic Switching Among 
Individual Search Algorithms 

The MOHO software [1,2,3] that was developed as a part of this effort is a high level relay 
hybrid metaheuristic algorithm [4]. In its current version, three different evolutionary multi- 
objective search algorithms are coordinated and applied in order to expedite the search for a 
Pareto front. Like many other evolutionary algorithms, MOHO runs in steps of population 
generations. At each generation the algorithm that is selected makes a new generation using 
any or all of the information provided to it: the last generation's population and the latest non- 
dominated set. Then, the MOHO algorithm combines the new generation and the latest non- 
dominated set to create a new non-dominated set. MOHO keeps track of this process to detect 
five possible improvements to the dominated set (the Pareto approximation). If the particular 
search algorithm can achieve at least two of any of the five improvements, this algorithm is 
allowed to create the next generation. MOHO has been successfully run on Microsoft Windows 
workstations, Linux workstations and Beowulf style clusters. The software can run in two 
modes; serial and parallel. In serial mode the optimization and objective function evaluation 
occur on the same processor. In parallel mode, the optimizer runs on a processor (the cluster 
server in this case) and the objective function evaluations are then made into jobs that are 
submitted to the job manager of the cluster in question. This architecture is preferred by the 
authors to allow for large parallelized computational fluid dynamics and finite element analysis 
based objective function calls that consume significant amounts of computing time. 

MOHO uses three multi-objective optimization algorithms: 
1. Strength Pareto Evolutionary Algorithm (SPEA-2) by Zitzler ef a/. [5], 
2. Multi-objective implementation [6] of the single objective Particle Swarm (referred to as 

MOPSO here) by Eberhardt et al. [7], 
3. Non-Sorting Differential Evolution (NSDE) algorithm which is a low level hybrid metaheuristic 

search combining NSGA-II by Deb etal. [8] and Differential Evolution by Storn and Price [9]. 
Each of these constituent search algorithms was modified, if needed, to fit into MOHO's 

system of maintaining the non-dominated set and clustering outside of the search algorithms. 
Also each search algorithm was set up to be able to accept populations and non-dominated sets 
in a generalized format to allow the hybridization to run smoothly. These conditions do not 
adversely affect the application of the individual search algorithms. 

SPEA-2 was utilized in the following manner for this work: 
1. A population P and a non-dominated set P' are handed to the algorithm from the 

centralized part of the MOHO software. 
2. Then, the fitness is calculated for members of P and P". 
3. Binary tournament selection is used to select the new set of offspring from the mating 

pool of P+P'. 
4. Two-point crossover and bit mutation are performed, but can be changed by the user 

from the input to better suit a given problem. 
5. New population and old non-dominated population are returned to the centralized portion 

of MOHO where the new P' is generated and clustering is performed, if needed. 
The SPEA-2 algorithm does not perform the merging of populations and non-dominating 

sets. This step is performed by MOHO, external to the search, so the switching algorithm can 
monitor the progress of the non-dominated set. 

The multi-objective Particle Swarm algorithm used for this work is derived from the original 
Particle Swarm Optimization (PSO) algorithm developed by Eberhardt et al. [7]. Some Multi- 
Objective Particle Swarm Optimization (MOPSO) algorithms utilize weighted sums of PSO 
algorithms [6]. While this type of application of PSO is effective in its own right, an optimization 
algorithm solving multi-objective problems in a Pareto optimal sense was needed. To modify 
PSO for multi-objective optimization, the definition of personal best value and global best values 



have been modified. In MOPSO, the personal best value for a particle is the non-dominated 
objective in the particle's search history. The global best value is the member of the current 
generation's non-dominated set that is closest (in objective space) to the particle for which the 
velocity is being calculated. Other than the method for choosing the global and personal best 
for each particle, the rest of MOPSO remains true to the original PSO. The MOPSO algorithm 
was utilized in the following way for this work: 

1. A population P and a non-dominated set P' are handed to the algorithm from the 
centralized part of the MOHO software. 

2. A velocity vector for each particle is calculated using the technique described earlier. 
3. The displacement for each particle is calculated using the equations of motion and 

unit time step. 
4. New population and old non-dominated population are returned to the centralized 

portion of MOHO where the new P' is generated and clustering is performed, if 
needed. 

The NSDE created for this work is a low level combination of NSGA-II [8] and differential 
evolution (DE) [9]. In particular, the mutation operator from DE replaces the mutation operator 
in the original NSGA-II. The rest of the algorithm is from NSGA-II. At the beginning of the 
algorithm, the last population and the non-dominated population are used to play the roles of the 
offspring and parents from the last generation, respectively. At this point, NSDE continues on 
like NSGA-II until the new generation is created. Then, the new population and the old non- 
dominated set are handed back to the switching algorithm in MOHO. 

After each generation is created, and the new non-dominated set is identified, the software 
assigns the new non-dominated set a score from zero to five. If the new non-dominated set gets 
a score of two or better, the algorithm that generated the set was allowed to create the next 
generation of population points. An algorithm scores a point for each of five possible 
improvements that are achieved from one generation to the next. Also, if an algorithm has run 
consecutively beyond a user specified iteration (generation) limit, the run switches to the next 
constituent search algorithm determined by the algorithm pointer array. This rule was used to 
allow all constituent search algorithms an opportunity to improve the Pareto approximation. 

The switching algorithm compares the non-dominated set from the current generation to the 
non-dominated set of the previous generation. The comparison process consists of looking at 
five desired improvements to the Pareto approximation. The improvements are actually gains in 
five performance criteria (quality factors). More than one quality factor was used because of the 
work of Zitzler et at. [10, 11], where it is shown that as opposed to the situation in a single 
objective optimization, one quality factor alone should not be used to compare two Pareto 
approximations. This is why an algorithm must score a minimum of two in order to continue 
creating new generations of population points. This work also puts forth definitions of 
compatibility and completeness for quality factors. After the improvement metrics for the MOHO 
algorithm are presented, the applicability of the compatibility and completeness presented in 
Zitzler et al. [10, 11] will be discussed. 

The main part of MOHO handles combining the new generation with the most recent non- 
dominated set to form the new non-dominated set by employing objective space based 
clustering as needed and calculating the improvements. The clustering is employed only as a 
non-dominated set trimming tool when the software determines that the non-dominated set will 
grow beyond the user defined limit. Five improvements were developed and used in this work 
because there is a concern that adding too many Pareto based calculations would add 
considerable overhead to the software. Now that the algorithm switching logic has been 
discussed, the five improvements will be defined. 

Improvement #1 - Non-Dominated Set Size Changes 



For this improvement, the size of the non-dominated set changes. This change can be either 
the non-dominated set getting larger or smaller. The non-dominated set grows in size when a 
new point on the Pareto approximation front is discovered and the old non-dominated set is 
below the user defined non-dominated set size limit. Shrinking of the non-dominated set occurs 
when a new point or points, dominate larger set of points from the old non-dominated set. This 
indicates one of two things: a) the new point(s) significantly redefine the geometry of the non- 
dominated set, or b) clustering has yet to be employed on the Pareto approximation and 
multiple points were clustered around each other. 

Improvement #2 - A Point from the New Generation Dominates 
This improvement is satisfied if any population member of the new generation dominates 

any member in the last generation's non-dominated set. Any opportunity to improve the Pareto 
approximation by removing a dominated point is considered an improvement. This can be 
expressed by: 

z')SetA= False 

ii) Let m = Sizeof(Pop) and n= Sizeof(NonDom) 

Hi) (POP" / NonDon\ ? True: False)v,4;j = lX,,m;k= \&,n 

z'v) 2nd Improvement^ A 

Improvement #3 - Change in the Dominated Hyper Volume 
The hyper volume quality factor has its roots in the hyper volume calculation presented by 

Deb [12]. When the first population generation is created using Sobol's quasi random sequence 
generator [13, 14], the worst objective value for each objective from the entire population is 
collected into a worst case objective vector. This worst case objective vector is used as the 
common diagonal for all hyper volume calculations in the search; a static datum for the entire 
run. The improvement is considered fulfilled when the new generation's contribution to the non- 
dominated set causes a change in the dominated hyper volume for the non-dominated set. 

Improvement #4 - Average Distance Change 
In this calculation the average Euclidian distance of all the objective vectors of the new 

generation's non-dominated set is calculated. This is basically the magnitude of the objective 
vectors, because the datum is the origin of the objective space. If the measure changes from 
the value of the old generation, this improvement has been met. This improvement tries to 
capture changes in the geometry of the non-dominated set. 

Improvement #5 - Spread of the Don-dominated Set 
The equation for the spread is found in a book by Deb [12] and its origins are attributed to 

Zitzler. This improvement is fulfilled if the new generation's non-dominated set increases the 
spread over that of the last generation. The equation for the spread is as follows: 

SPRD = -iZ 
id id   ^ 

m - win f' m 
i=\ '='   ) 

(2) 

Improvements #3 and #5 are common metrics for trying to determine if one Pareto 
approximation set is better than another. The other improvements are not common, since it 
would be useless to compare final Pareto results from two different multi-objective algorithms. 



If the search algorithm in question is not able to achieve at least two improvements, or it has 
consecutively run for the user specified limiting number of iterations, the latest population and 
non-dominated set are passed to the next search algorithm. MOHO runs until the maximum 
number of function evaluations is performed. All optimization run parameters are specified by 
the user in an external (to the software) input file. MOHO was tested in order to evaluate its 
capability by running it on test problems from three previously published works. The first work 
examined is the well known multi-objective optimization comparison paper by Zitzler, Thiele and 
Deb [10] (referred to as ZDT from this point forward). A copy of the original data from the ZDT 
paper can be found oh the website cited in that paper. In the present work, we will present this 
data again and inject the results from our MOHO into this original comparison. The second and 
third works that MOHO will be compared with, are related to each other. In the original NSGA-II 
paper, Deb et al. [8, 10] revisit some of the ZDT problems, present results for some other 
unconstrained problems, and use NSGA-II to solve some constrained problems. In the present 
work, our MOHO will was used to solve the unconstrained problems of the original NSGA-II 
paper. Results from that paper will be compared to MOHO results. Finally, the paper by Vrugt 
and Robinson compares their AMALGAM [15] algorithm to the performance of NSGA-II for 
some unconstrained multi-objective optimization test problems. These results will also be 
included in this work and compared to results from MOHO using the same experimental 
conditions. 

In the ZDT work, the Strength Pareto Evolutionary Algorithm (SPEA), Non-Sorting Genetic 
Algorithm (NSGA), Vector Evaluated Genetic Algorithm (VEGA), Niched Pareto Genetic 
Algorithm (NPGA), Hajela and Lin's evolutionary algorithm (HLGA), Fonseca and Fleming's 
evolutionary algorithm (FFGA), and a Single Objective Evolutionary Algorithm (SOEA) were 
studied. The algorithms were applied to six multi-objective problems designed by those authors 
specifically for that work. All test problems represent two-objective optimizations where both 
objectives are to be minimized. All seven algorithms were compared in two ways. 

The optimizer utilizes several multi-objective evolutionary optimization algorithms and 
orchestrates the application of these algorithms to multi-objective optimization problems, using 
an automatic internal switching algorithm. The switching algorithm is designed to favor those 
search algorithms that quickly improve the Pareto approximation and grades improvements 
using five criteria. A thorough testing of reliability and accuracy of MOHO against a number of 
prominent multi-objective optimization algorithms and one hybrid optimizer confirmed that 
MOHO performs reliably and accurately. 

For the first results comparing MOHO to the evolutionary multi-objective optimization 
algorithms from the ZDT work [10, 11, 12], it has been shown that MOHO can outperform the 
classic evolutionary algorithms for all test problems except ZDT5. Difficulties surrounding ZDT5 
test case are not trivial as was confirmed by Deb et al. [12] who tested all the ZDT test 
problems, except ZDT5. 

First, a plot of the non-dominated sets for each algorithm was made. To allow for 
performance fluctuations caused by the random number generators driving the initial population 
and genetic operators, all algorithms were run 30 times on each of the six problems. The non- 
dominated plot is generated by making a union of the non-dominated sets for the first five runs, 
of each algorithm, on each problem. The non-dominated set of the unions is then plotted. In the 
figures presented here, the results for MOHO are injected into the plot results from ZDT and the 
random number data from the original plots is removed to provide a clearer view of the 
performances of the search algorithms. Figures 1 through 6 are the plots for ZDT test problems 
1 through 6, respectively, using the original ZDT paper data and MOHO data run for this work. 

From these figures it is evident that our MOHO algorithm performs very well on almost all of 
the ZDT test cases as far as accuracy is concerned. Besides being an accurate evolutionary 
search algorithm, these figures demonstrate that MOHO is also a reliable algorithm that 
consistently gives good results. 
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The second comparison mechanism is the "cover" function proposed in the ZDT work. The 
cover function evaluates what fraction of the non-dominated set of algorithm A is either equal to 
or weakly dominates the non-dominated set of algorithm B. The formula for the cover functions, 
as shown in the ZDT work, is: 

C(A,B):= 
|{a"e B;3a'e A:a'Ea"}| 

(3) 

Of note is the fact that C(A,B) is not necessarily equal to C(B,A). 
Figure 7 shows the results for the cover function analysis for all test problems and 

optimization algorithms compared [3]. In this analysis, all 30 runs of each algorithm are utilized. 
Each cell in Figure 7 is made by treating the algorithms in the row as algorithm A in equation 3. 
Each of the 30 Pareto approximations for algorithm A is compared to the algorithm B (column). 
So, for each Pareto approximation of algorithm A, comparisons with 30 algorithm B Pareto sets 
are performed. This means that 30 cover function values are generated. Each column in the 
box plot (Figure 7) represents the results for one of the ZDT problems. So, each column in the 
box plot represents a total of 900 Pareto approximation set comparisons. 

rig. 7 Cover function analysis from ZDT with MOHO data inse rled 
into Hit; original analyst*. As in Hit original analysis the value at the 
iMittom of the graph is 0 and the value is I at the top. The black boxes in 
the box plots show the average cover value for all 30 runs. The shaded 
boxes and the whiskers display the OIK--standard-deviation spread and 
(wo-siandard-deviation spreads, respectively. fi.e.. ±0.5 standard 
deviations and ±1 standard deviation). The plots are read left to right: 
the leftmost box shows the results for ZD1T and rightmost box shows the 
results for /Dili. 
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Using the data generated from solving the ZDT test problems it was possible to perform 
another analysis of the MOHO algorithm's performance. Figure 8 shows the average percent of 
total number of function evaluations used by each of the three constituent search algorithms in 
MOHO when applied to a given ZDT test problem. Figure 8 takes into account all 30 runs used 
for the ZDT data comparison. 

ZOTt ZOTI ZOT3 ZDT4 ZDT 5 JOTS 

Fig. 8 Average percent of total execution lime that each constituent 
optimization algorithm was used in MOHO for each of the six ZDT test 
problems. I he a\erage i.s taken o\er 30 runs used in the ZDT 
comparison. 

Two-Objective Hybrid Optimizer with a Response Surface 
Besides MOHO algorithm, we have also developed an entirely different multi-objective hybrid 
optimization algorithm that currently works only for two-objective problems [16-19]. The general 
schematic of this hybrid optimizer is given in Figure 9 and Figure 10. 

m% of the particles found a minimum 

Improvement of the objective function V     Evolution 

Figure 9 - Global procedure for the hybrid optimization method H1 

The method starts with a randomly generated population matrix P in the domain of interest. 
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Thus, successive combinations of chromosomes and mutations are performed, creating new 
generations until an optimum value is found. The iterative process is given by 

x*+l=^xf+^2[a + F(p-Y)] (4) 

where 
Xi is the /'-th individual of the vector of parameters. 
a, p and yare three members of population matrix P, randomly chosen. 
F is a weight function, which defines the mutation (0.5 < F < 1). 
k is a counter for the generations. 
(5, and ^ are delta Dirac functions that define the mutation. 

In this minimization process, if fi(xk+1) < /(xk), then xk+1 replaces xk in the population matrix P. 
Otherwise, xk is kept in the population matrix. 

The binomial crossover is given as 

<?,=(), if  R<CR 

1,  if  R>CR 
(5) 

where CR is a factor that defines the crossover (0.5 < CR < 1) and R is a random number with 
uniform distribution between 0 and 1. 

In the hybrid optimizer H1, when a certain percent of the particles find a minimum, the 
algorithm switches automatically to the differential evolution method and the particles are forced 
to breed. If there is an improvement in the objective function, the algorithm returns to the particle 
swarm method, meaning that some other region is more prone to having a global minimum. If 
there is no improvement on the objective function, this can indicate that this region already 
contains the global value expected and the algorithm automatically switches to the BFGS 
method in order to find its location more precisely. In Figure 9, the algorithm returns to the 
particle swarm method in order to check if there are no changes in this location and the entire 
procedure repeats itself. After some maximum number of iterations is performed (e.g., five) the 
process stops. 

The hybrid optimizer H2 [19] is quite similar to the H1, except by the fact that is uses a 
response surface method at some point of the optimization task. The global procedure is 
illustrated in Fig. 10. It can be seen from this figure that after a certain number of objective 
functions were calculated, all this information was used to obtain a response surface. Such a 
response surface is then optimized using the same proposed hybrid code defined in the H1 
optimizer so that it fits the calculated values of the objective function as closely as possible. 
New values of the objective function are then obtained very cheaply by interpolating their values 
from the response surface. 

In Figure 10, if the BFGS cannot find any better solution, the algorithm uses a radial basis 
function interpolation scheme to obtain a response surface and then optimizes such response 
surface using the same hybrid algorithm proposed. When the minimum value of this response 
surface is found, the algorithm checks to see if it is also a solution of the original problem. Then, 
if there is no improvement of the objective function, the entire population is eliminated and a 
new population is generated around the best value obtained so far. The algorithm returns to the 
particle swarm method in order to check if there are no changes in this location and the entire 
procedure repeats itself. After a specified maximum number of iterations is performed (e.g., five) 
the process stops. 
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Improvement of the 
objective function 

Non-improvement of 
•     the objective 

function 

Figure 10 - Global procedure for the hybrid optimization method H2 

The new algorithm, which will be called H3, is an extension of the previous ones. The global 
procedure is outlined below: 

1. Generate an initial population, using the real function (not the interpolated one) f(x). 
Call this population Preai. 

2. Determine the individual that has the minimum value of the objective function, over 
the entire population Preai and call this individual x^. 

3. Determine the individual that is more distant from the xbest, over the entire population 
Preai. Call this individual xfar. 

4. Generate a response surface, with the methodology at section 2, using the entire 
population Preai as training points. Call this function g(x). 

5. Optimize the interpolated function g(x) using the hybrid optimizer H1, defined above, 
and call the optimum variable of the interpolated function as Xjnt. During the 
generation of the internal population to be used in the H1 optimizer, consider the 
upper and lower bounds limits as the minimum and maximum values of the 
population Preai in order to not extrapolate the response surface. 

6. If the real objective function f(xmi) is better than all objective function of the population 
Preai, replace xfar by xint. Else, generate a new individual, using the Sobol pseudo- 
random sequence generator within the upper and lower bounds of the variables, and 
replace xfar by this new individual. 

7. If the optimum is achieved, stop the procedure. Else, return to step 2. 
From the sequence above, one can notice that the number of times that the real objective 

function f(x) is called is very small. Also, from step 6, one can see that the space of search is 
reduced at each iteration. When the response surface g(x) is no longer capable to find a 
minimum, a new call to the real function f(x) is made to generate a new point to be included in 
the interpolation. Since the CPU time to calculate the interpolated function is very short, the 
maximum number of iterations of the H1 optimizer can be very large (e.g., 1000 iterations). 
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The hybrid optimizer H3 was compared against the optimizer H1, H2 and the commercial 
code IOSO 2.0 for some standard test functions. The first test function was the Levy #9 function 
[20], which has 625 local minima and 4 variables. Such function is defined as 

/(x) = sin>-zJ + X(z,-l)2[l + 10sin>z,+,)] + (z4-l)
2 

;=1 
(6) 

where 

= i+V'0' = 1'4) (7) 

The function is defined within the interval -10 < x < 10 and its minimum is f(x) = 0 for x = 1. 
Figure 11 shows the optimization history of the IOSO, H1, H2 and H3 optimizers. Since the H1, 
H2 and H3 optimizers are based on random number generators (because of the Particle Swarm 
module), we present the best and worst estimates for these three optimizers. 

From Fig. 11, it can be seen that the performance of the H3 optimizer is very close to the 
IOSO commercial code. The H1 code is the worst and the H2 optimizer also has a reasonable 
good performance. It is interesting to note that the H1 code is the only one that doesn't have a 
response surface model implemented. 
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Figure 11 - Optimization history of the Levy #9 function for the (a)IOSO, (b)H1-best, (c)H2- 
best, (d)H3-best, (e)H1-worst, (f)H2-worst and (g)H3-worst optimizers 

The second function tested was the Griewank function [20], defined as 

n „.2 n 

y  '    tt 4000   if 

x   6    ]-600,600 [ 

cos 'x^ 

>/J 
+ l 

,0 = U) 

(8) 
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The global minima for this function is located at x = 0 and is f(x) - 0. The function has an 
incredible number of local minima, making the optimization task quite difficult. 

Figure 12 shows the optimization history of the IOSO commercially available Russian 
optimization code IOSO [21], H1, H2 and H3 optimizers. Again, the best and worst results for 
H1, H2 and H3 are presented. From this figure, it is clear that the H1, H2 and H3 optimizers are 
much better than the IOSO commercial code. The H1 code was the best, while the H2 
sometimes stopped at some local minima. The worst result of the H3 optimizer was, however, 
better than the result obtained by IOSO. It is worth to notice that the, with more iterations, the 
H3 code could reach the minimum of the objective function, even for the worst result. 
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Figure 12 - Optimization history of the Griewank function for the (a)IOSO, (b)H1-best, (c)H2- 
best, (6)H3-best, (e)H1-worst, (f)W2-worsf and (g)H3-worst optimizers 

The next test function implemented was the Rosenbrook function [22], which is defined as 

f(x[,x2) = l00(x2-xff+(l-xi)
2 (9) 

The function is defined within the interval -10 < x < 10 and its minimum is f(x) = 0 for x = 1. 
Figure 13 shows the optimization history of the IOSO, H1, H2 and H3 optimizers. 

For this test function, which is almost flat close to the global minima, the IOSO code was the 
one with the best performance, followed by the H3 optimizer. The H2 did not perform well and 
the H1 was able to get close to the minimum, but with a huge number of objective function 
calculations. When looking at the H3 results, the final value of the objective function differs by 
some orders of magnitude. However, the optimum solution obtained with this new optimizer was 
x, = 0.9996 and x2 = 0.9992, while the IOSO obtained x, = 1.0000 and x2 = 1.0000. Thus the 
relative error among the variables was less than 0.01%, indicating that despite of the 
discrepancy among the final value of the objective function, the H3 code was able to recover the 
value of the optimum variables with a negligible relative error. 
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The last test function analyzed was the Mielle-Cantrel function [23], which is defined as 

/(*) = exp( + I00(x,-x3) + arctan4(x3-x4) + x,2 (10) 

The function is defined within the interval -10 < x < 10 and its minimum is f(x) - 0 for x, = 0 
and x2 = x3 = x4 = 1. Figure 14 shows the optimization history of the IOSO, H1, H2 and H3 
optimizers. Again, the best and worst results for H1, H2 and H3 are presented. 
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For this function, the IOSO code was the best, followed by the H3. The H2 code performed 
very bad again the the H1 was able to get to the global mininum after a huge numbe of objective 
function calculations. As occurred with the Rosenbrook function, in spite of the H3 result for the 
objective function differ from the IOSO code, the final values of the variables were 
x1=4.0981x10'8, x2=0.9864, x3=0.9688 and x4=0.9626 for the H3 optimizer and x^-O.^ISxIO"5, 
x2=1.002, x3=0.9957 and x4=0.9962 for the IOSO code. 

ALGORITHM DEVELOPMENTS FOR RESPONSE SURFACES 

Three distinctly different algorithms have been developed for automatic generation of multi- 
dimensional response surfaces (metamodels) supported by a small number of high fidelity 
values of the objective functions. These three methods were based, respectively, on: 
(1) Wavelet based neural networks [24] 
(2) Polynomial radial basis functions [25-28] 
(3) Self-organizing maps and graph theory [35] 

Response Surfaces using Wavelet-Based Neural Networks (WNN) 
This is an alternative technique to search the proper activation functions for the construction 

of WNN that helps to build response surface for predicting multi-dimensional function spaces 
accurately and efficiently. Several modifications to the architecture and basis function in WNN 
were suggested and tested using diverse test functions. Simulation results show that WNN for 
fitting multi-dimensional surfaces having moderate number of dimensions (<35) can be 
implemented accurately. The modified WNN developed in such a way had about 5 - 7 % 
average absolute error on training data in most of the test problems. The final testing for most of 
the test functions was done using 1000 - 1200 data points. It was found that about ten to twelve 
activation nodes in the hidden layer of WNN were adequate for good predictions, that is, 5% 
average absolute error on training data. Further addition of activation nodes in WNN improved 
the accuracy on training data only slightly, but did not help in improving the accuracy on testing 
data further [24]. This implies that for the given dataset, a WNN with about ten to twelve 
activation nodes extracted most of the information regarding the topology of the functional 
space. Finally, a hybrid WNN network was developed using the concept of having multiple 
WNNs and helped in increasing the accuracy of prediction of highly non-linear functions. From 
Figure 15 it appears that WNN is appropriate for low-dimensional response surfaces. 

Figure 15 - R2 accuracy results and CPU time for a WNN with one subnet. 



Response Surfaces using Polynomials of Radial Basis Functions 
Let us suppose that we have a function of L variables x„ / = 1 L The RBF model used in 

this work has the following form [25-28] 

N ML 

,(x) = /(x) = X^(|x-x,|) + IlA^U) + A (ID 

where x={x,,...,x,,...,xL) and f(x) is known for a series of points x . Here, pk(x,) is one of the M 
terms of a given basis of polynomials [29]. This approximation is solved for the Oj and /}iM 

unknowns from the system of N linear equations, subject 

N 

M (12) 
N 

N 

5>,=o (13) 

In this work, the polynomial part of Eq. (11) was taken as 

pk{x,) = J (14) 

and the radial basis functions are selected among the following [30] 

Multiquadrics:   (p(\xi - x]. j = J(xj - xy) + cj (15) 

Gaussian:   ^(x;-x;j = exp -c^(x,-x;) (16) 

Squared multiquadrics:   (py\x( -x\) = (xi -xj \ +cy
2 (17) 

Cubical multiquadrics:   ^(x,-x7 j= •J(x,_x>) -Vc1. (18) 

with the shape parameter c, kept constant as 1//V. The shape parameter is used to control the 
smoothness of the RBF. 

From Eq. 11 one can notice that a polynomial of order M is added to the radial basis 
function. M was limited to an upper value of 6. After inspecting Eqs. (11-14), one can easily 
check that the final linear system has [(/V+/W*L)+1] equations. Some tests were made using the 
cross-product polynomials (x,x;x*...), but the improvements on the results were irrelevant. Also, 
other types of RBFs were used, but no improvement on the interpolation was observed. 

To provide a more complete picture of metamodel accuracy, three different metrics are used: 
R Square, Relative Average Absolute Error (RAAE), and Relative Maximum Absolute Error 
(RMAE)[31]. 
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a) R Square (R2) 

1=1  

i(y,-yf 
R2=l-^ - = 1—^- (19) 

variance 

i=] 

where v- is the corresponding predicted value for the observed value y.; y is the mean of the 

observed values. While MSE (Mean Square Error) represents the departure of the metamodel 
from the real simulation model, the variance captures how irregular the problem is. The larger 
the value of R2, the more accurate the metamodel. 

b) Relative Average Absolute Error (RAAE) 

Eb.-j'.l 
RAAE = -^  (20) 

n*STD 

where STD stands for standard deviation. The smaller the value of RAAE, the more accurate 
the metamodel. 

c) Relative Maximum Absolute Error (RMAE) 
max v\~ Mfo -&l»-»k -ill) RMAE = *"    J'VVL   JiV    wn   Jnv (21) 

STD 
Large RMAE indicates large error in one region of the design space even though the overall 

accuracy indicated by R2 and RAAE can be very good. Therefore, a small RMAE is preferred. 
However, since this metric cannot show the overall performance in the design space, it is not as 
important as R2 and RAAE. 

Although the R2, RAAE and RMAE are useful to ascertain the accuracy of the interpolation, 
they can fail in some cases. For the R2 metric, for example, if one of the testing points has a 
huge deviation of the exact value, such discrepancy might affect the entire sum appearing on 
Eq. (19) and, even if all the other testing points are accurately interpolated. Similarly, the R2 
result can be very bad. For this reason, we also calculate the percentage deviation of the exact 
value of each testing point. Such deviations are collected according to 6 ranges of errors: 0- 
10%; 10-20%; 20-50%; 50-100%; 100-200%; >200%. Thus, a interpolation that has all testing 
points within the interval of 0 to 10% of relative error might be considered good in comparison to 
another one where the points are all spread along the intervals from 10% to 200%. 

The procedure was shown to work for fitting highly non-linear functions where large number 
of variables were involved. The RBF technique is quite powerful regarding its accuracy and 
reduced CPU time. Even when the number of variables were as large as 500, the RBF 
approximation was very fast and robust. This is a promising technique for real time 
interpolations such as target tracking or image recognition. Some comparisons were made with 
the Wavelets Neural Network showing a general superior behavior of the RBF. A new hybrid 
optimizer based on the RBF interpolation was also presented, which is much more efficient than 
our previous ones. In fact, its performance is very close to IOSO software [21 ] which is one of 
the best commercial optimizers available. 

Although the R2, RAAE and RMAE are useful to ascertain the accuracy of the interpolation, 
they can fail in some cases. For the R2 metric, for example, if one of the testing points has a 
huge deviation from the exact value, such discrepancy might affect the entire sum appearing in 
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Eq. (19) and, even if all the other testing points are accurately interpolated, the R2 result can be 
very bad. For this reason, we also calculate the percentage deviation from the exact value of 
each testing point. 

In order to test the accuracy of the RBF models proposed, 295 test cases were used, 
representing linear and non-linear problems with up to 100 variables. Such problems were 
selected from a collection of 395 problems (actually 295 documented test cases), created by 
Hock and Schittkowski [32] and Schittkowski [33]. Figure 16 shows the number of variables of 
each one of the test cases. Note that there are 395 test cases, but some of them were not used 
because test cases ranging from 120 to 200 were not defined in the original publications. 

100 

• • 

J • r * / 

0 50 100 150 200 250 300 350 400 450 

Test problem 

Figure 16. Number of variables for each of the 295 test cases considered for RBF fit. 

In order to verify the accuracy of the interpolation over different number of training points, 
three sets were defined; scarce, small and medium. Also, the number of corresponding testing 
points varied according to the number of training points. Table 1 presents these three sets, 
based on the number of dimensions (variables) L of the particular problem. 

Table 1. Number of training and testing points where L is the number of variables 
Number of training points Number of testing points 

Scarce set 3L 300/. 
Small set 10L 1000 L 

Medium set 50 L 10000 L 

For example, if we are trying to fit a function of say, 500 variables, then a scarce set will 
have 3*500 = 1500 training points and 300*500 = 150,000 testing points. The large matrix 
resulting from Eq. (11) assuming that we use polynomial of order M = 6, will be of size (6*500 + 
1,500 + 1 = 4501) squared. Such large resulting matrices have been solved iteratively using bi- 
conjugate iterative method. Cross-validation was performed for each combination of these, say, 
4501 x 4501 coefficients. 

Figure 17 shows the R2 metric for all test cases, using the scarce set (3*L) of training points 
only for the interpolation functions that presented some meaningful results. It can be noticed 
that the results are all spread from 0 (completely inadequate interpolation) to 1 (very accurate 
multi-dimensional interpolation). Qualitatively, the darkest pictures mean better results. The 
fittest polynomial RBF method provides the best interpolation among all test functions. The 
RBF1, RBF4 and RBF7 based methods also performed a good interpolation, based on the R2 
metric. 
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Figure 17. R2 metric for various fitting method using scarce set (3*L) of training points. 

Figure 18 shows the computing time required to interpolate each test function, using the 
scarce set (3*L) of training points for the fittest polynomial RBF method. For most of the cases, 
the computing time was less than 10 seconds, using a Pentium IV 3 GHz with 1Gb RAM 
running Rocks 4.2.1 (Cydonia) and the Intel© ifort (IFORT) 9.1 20060323 compiler with the 
directives "-static-libcxa -static -03 -r8". In fact, the highest dimensional test case, which has 
100 variables required only 50 seconds to be interpolated. 
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Figure 18. Computing time required for the scarce set (3*L) of training points using the fittest 
polynomial RBF method. 
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Response Surfaces Using a Hybridized Multi-Layer Self-Organizing 
Self-organizing algorithms come from the field of cybernetics [34]. The idea is that this 

algorithm "learns" the black box model it is trying to mimic and makes the surrogate model only 
as complex as is required. By allowing the program to gradually complicate the final model, the 
construction and evaluation time of surrogate model is automatically optimized for a given task. 
In this multi-layer self-organizing algorithm very simple polynomial basis functions are used to 
generate models describing highly non-linear multi-variable functions. 
Based on these concepts, we have developed and thoroughly tested a hybridized multi-layer 
self-organizing algorithm [35]. In this method, the algorithm can choose the basis functions that 
locally capture the interaction between the variables in the most accurate fashion. Two 
hybridized methods will be presented [35]. In the first method, the hybridized algorithm will be 
able to choose from linear, quadratic, cubic and quartic basis polynomials, as needed. In the 
second hybridized algorithm, the same basis polynomial options from the first hybrid method are 
given to the algorithm plus the capability to choose a simple RBF as a basis function to describe 
interactions among the variables. These methods will be compared to the single basis function 
response surface models using the same test problems. 

This multi-layer self-organizing algorithms with different order polynomial basis functions will 
be compared using Schittkowski's suite of 295 non-linear optimization test cases [32, 33]. 

The self-organizing algorithm used in this work is the multilayer algorithm. In the multilayer 
algorithm the design variables are permutated, in pairs, to form nodes. At each node a least 
squares regression is performed using the two variables input to the nodes. These are variable 
vectors that are the size of the sample population. So, the output of the node is a vector of the 
predicted values from the regression 

The polynomial used for the regression is a first order or second order polynomial. For 
instance, a second order basis polynomial would be: 

k,n k,n   .       k,n    k,n   .       k,n     k.n   ,       k,n    k.n     k,n   .       k.n    k,n     k.n   ,       k.n    k.n    k,n 
yCj   ~ °0     + a\     Xi      + °2    Xj     + ai    Xi     Xj     + °4    Xl    Xi      + a5    X      Xj 

where 

i    = 1,2,K .number of inputs to given layer 

j    = 1,2,K ,number of inputs to given layer (22) 

k = current layer 

n = node number at current layer 

i*j 

The output of the node is the vector predicted y values for the given input. The output of a node 
in layer k-1 becomes the input (provides an x, vector) for layer k. 

The notation in equation one is designed to inform the reader that the functions and 
polynomial coefficients pertain to a particular layer and particular node on the layer. The 
notation should also give the reader a feel for the computational resources needed to create 
and maintain a multilayer self-organizing model. 

Figure 19 shows a possible multilayer surrogate model for a three variable engineering 
model. In the bottom layer (the zero layer) actual design variables are the nodes in the layer. 
These become the x inputs to layer 1. The nodes for layer 1 are created by permuting the input 
variables and performing least squares fit using Equation 22 and the actual response from the 
actual function (i.e., objective function, engineering simulation, etc.). Once layer 1 is made layer 
2 is created but, now the nodes of layer 1 provide the x's to make the new nodes using Equation 
1.  Now when layer 3 is to be made the 3rd node of layer 2 is not included. For now, we will just 
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say that the results of that regression were not good enough to be used to make the 3rd layer. 
Since only two nodes from layer 2 were used to make layer three, only one node can be created 
in layer three and the process of making models ends there. 

Layer 3 

Layer 2 

Layer 1 

Input Variables fxij (" X2 J (MJ 

Figure 19. Example of a three-layer model for a multi-layer self-organizing algorithm. 

The third node in layer 2 is not used to make nodes in layer 3 in Figure 19. A selection criterion 
is used to determine if the information in a node get passed on to the next layer. Madala and 
Ivakhnenko [34] suggest that using the following equation is an appropriate means for checking 
the quality of a node and can be a selection criterion. 

tx 

A2(£)=  peN° 
(23) 

T(yP-y) 
pzNB 

Where : 

y    = desired values 

yp = the predicted values 

y = the mean of the desired values 

In the multilayer algorithm a threshold is set for the maximum acceptable value of Eq. (23). 
Nodes that are within the threshold are passed on to the next layer. For each new layer the 
threshold is made smaller. This serves to minimize the amount of nodes in each layer to only 
the information that is needed to improve the network. This trimming of nodes is crucial to 
keeping the method compact and efficient. 

The preliminary results for the hybrid model, polynomial basis only, combined with and RBF 
fit of the model residuals is presented for the 295 test cases of Schitkowski [32, 33]. 
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The self-organizing multi-level fitting concept for multi-dimensional response surfaces appears 
to be suitable for very large dimensional response surfaces where the objective function 
depends on thousands of design variables. For smaller dimensionality response surfaces, this 
algorithm is too costly and cumbersome. The option of the multi-layer self-organizing algorithm 
that uses lower level (quadratic) local fits, and then uses a polynomial of radial basis functions 
to fit the errors of the quadratic local fits, offers the highest accuracy. 
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Uncertainty Evaluation using Bayesian Statistics 
The algorithmic methods for the solution of inverse problems could be grouped into two 

basic approaches: pure inverse methods and optimization-based methods. That is, in most of 
the iterative methods for the solution of inverse problems, sophisticated regularization 
formulations are used in order to prevent numerical errors from growing exponentially. In many 
other methods, different optimization algorithms are used to solve de facto inverse problems by 
minimizing typically least-squares norms resulting from such algorithms. For an example, see 
Hernandez et al. [36]. A variety of techniques is currently available for the solution of inverse 
problems. However, one common approach relies on the minimization of an objective function 
that generally involves the squared difference between measured and estimated variables, such 
as the least-squares norm, as well as some kind of regularization term. Despite the fact that the 
minimization of the least-squares norm is indiscriminately used, it only yields maximum 
likelihood estimates if the following statistical hypotheses are valid: 
a) the errors in the measured variables are additive, uncorrelated, normally distributed, with 

zero mean and known constant standard-deviation; 
b) only the measured variables appearing in the objective function contain errors; and 
c) there is no prior information regarding the values and uncertainties of the unknown 

parameters. 
Although very popular and useful in many situations, the minimization of the least-squares 

norm is a non-Bayesian estimator. A Bayesian estimator is concerned with the analysis of the 
posterior probability density, which is the conditional probability of the parameters given the 
measurements, while the likelihood is the conditional probability of the measurements given the 
parameters. 

If we assume the parameters and the measurements to be independent Gaussian random 
variables, with known means and covariance matrices, and that the measurement errors are 
additive, a closed form expression can be derived for the posterior probability density. In this 
case, the estimator that maximizes the posterior probability density can be recast in the form of 
a minimization problem involving the maximum a posteriori objective function. 

On the other hand, if different prior probability densities are assumed for the parameters, the 
posterior probability distribution does not allow an analytical treatment. In this case, Markov 
Chain Monte Carlo (MCMC) methods are used to draw samples of all possible parameters, so 
that inference on the posterior probability becomes inference on the samples. As such, the 
number of samples required to accurately approximate the posterior distribution is generally 
large, resulting in prohibitive computational costs for many practical applications. Such is 
specially the case when the solution of the forward problem, which is needed for the 
computation of the likelihood function, requires large computational times. 

In this work, we examined the use of radial basis functions to interpolate the likelihood 
function, in order to reduce the computational cost of MCMC methods in the Bayesian approach 
of solution of inverse problems. The likelihood function is interpolated in the space of all 
possible parameters, by using a small number of solutions of the forward model as compared to 
that required for the implementation of the MCMC methods. Hence, the interpolated likelihood 
function, instead of the actual function, is used afterwards in the sampling procedure of the 
MCMC method, providing a substantial reduction of computational costs. 

Although very popular and useful in many situations, the minimization of the least-squares 
norm is a non-Bayesian estimator. A Bayesian estimator is concerned with the analysis of the 
posterior probability density, which is the conditional probability of the parameters given the 
measurements, while the likelihood is the conditional probability of the measurements given the 
parameters [37-40]. 

26 



Markov Chain Monte Carlo (MCMC) Methods 
In the Bayesian approach to statistics, an attempt is made to utilize all available information 

in order to reduce the amount of uncertainty present in an inferential or decision-making 
problem. As new information is obtained, it is combined with any previous information to form 
the basis for statistical procedures. The formal mechanism used to combine the new information 
with the previously available information is known as Bayes' theorem [40]. Therefore, the term 
Bayesian is often used to describe the so-called statistical inversion approach, which is based 
on the following principles [38]: 

1. All variables included in the model are modeled as random variables. 
2. The randomness describes the degree of information concerning their realizations. 
3. The degree of information concerning these values is coded in probability distributions. 
4. The solution of the inverse problem is the posterior probability distribution. 

Consider, for the sake of generality, the vector of parameters appearing in the physical model 
formulation as 

PT = [P^P2 PN] (24) 

and the vector of available measurements as 

(25) 

where N is the number of parameters and /is the number of measurements. Bayes' theorem 
can then be stated as [38]: 

'W„,r(P) = *(P|Y)= (26) 

where n^^P) is the posterior probability density, that is, the conditional probability of the 
parameters P given the measurements Y; 7tphor{P) is the prior density, that is, the coded 
information about the parameters prior to the measurements; /z(Y|P) is the likelihood function, 
which expresses the likelihood of different measurement outcomes Y with P given; and ;z(Y) is 
the marginal probability density of the measurements, which plays the role of a normalizing 
constant. 

In practice, such normalizing constant is difficult to compute and numerical techniques, such 
as Markov Chain Monte Carlo Methods, are required in order to obtain samples that accurately 
represent the posterior probability density. In order to implement the MCMC, a density function 
g(P*,P'' ) is required that gives the probability of moving from the current state in the chain P(M 

to a new state P*. 
The Metropolis-Hastings algorithm was used in this work to implement the MCMC method. It 

can be summarized in the following steps [38-40]: 
1 .Sample a Candidate Point P* from a jumping distribution g(P*, P(M>). 
2. Calculate: 
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a = min 
j    /r(P |Y)9(P"-",P ) (27) 

^•(P"-"|Y)9(P ,P"-") 

3. Generate a random value L/that is uniformly distributed on (0,1). 
4. If u <cdefine P'=P*, otherwise, define P- P(M). 
5. Return to step 1 in order to generate the sequence {P , P  P"}. 
In this way, we get a sequence that represents the posterior distribution and inference on 

this distribution is obtained from inference on the samples {P , P  P''}. We note that values 
of P1 must be ignored until the chain has not converged to equilibrium. For more details on 
theoretical aspects of the Metropolis-Hastings algorithm and MCMC methods, the reader should 
consult references [38-40[. 

We assume in this work that the errors in the measured variables are additive, uncorrelated, 
normally distributed, with zero mean and known constant standard deviation. Hence, the 
likelihood function is given by [37-40] 

!^)-"2|w-1|"1/2exp-|--[Y-T(P)]7'W[ 

where T is the vector of estimated variables, obtained from the solution of the forward model 
with an estimate for the parameters P, and W is the inverse of the covariance matrix of the 
measurements. 

An example of application of this combined algorithmic approach is described below as 
applied to the inverse problem of estimating the three thermal conductivity components of an 
orthotropic solid [41-43]. 

As an example for the proposed research, the physical problem considered here involves 
the three-dimensional linear heat conduction in an orthotropic solid, with thermal conductivity 
components k', A^and kl in the x*, y* and z* directions, respectively. The solid is a 

parallelepiped with sides a*, b* and c*, initially at temperature T'0 . For times t*> 0, uniform heat 

fluxes q[(t), q\(t) and q\(t) are applied at the surfaces x* = a*, y* = 6* and z* = c*, respectively. 
The other three remaining surfaces at x* = 0, y* = 0 and z* = 0 are maintained at a constant 
temperature (equal to the initial temperature). The mathematical formulation of this type of 
physical problem is given in dimensionless form by the following parabolic partial differential 
equation where T(x,y,z;t) is the unsteady three-dimensional temperature field: 

•)2T -\2 -p -\2 -p      -\ -p 

k{ - + k2 7 + £3 7=      in 0< x <a,0 < y <b,0 <z <c : t>0 (29.a) 
d x d y~ d z       d I 

r) T 
r = 0atx = 0    ;     *, —= g,(/)atjr = a   ,     forf>0 (29.b,c) 

ox \ '   l 

r = 0at>' = 0    ;     k2 — = q2(t)aty = b   ,     for/>0 (29.d,e) 
6y 

r) T 
7" = 0at2 = 0    ;     fr3 — = ?3(0atz = c    ,     for/>0 (29.f,g) 

7=0  forf=0 ; in0<x<a,0<y<b,0<z<c (29.h) 

In the direct problem associated with the physical problem described above, the three 
thermal conductivity components ku k2 and k3, as well as the solid geometry, initial and 
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boundary conditions, are known. The objective of the direct problem is then to determine the 
transient temperature field T(x, y, z, t) in the body. 

We assume the boundary heat fluxes to be pulses of finite duration th, that is, 

\q,    ,   for    0<t<th 

*,('Hn       « for; =1,2,3    (30) 1 [ 0    ,    for   / > th 

where cjl is the dimensionless magnitude of the applied heat flux during the heating period 0 < t 

<th. 
The solution of direct problem given by equation (1) for 0 < t < th can be obtained with the 

Classical Integral Transform Technique as 

r(x,y>z,o=^x|;|;0(Am^)a(A,>')4'(yo,z)frAm,/?„,ro)(i-e-''^^A2+*^>)      (3-0 
a be     ,     ,     , o=\ n=\ m=l 

where 

h^,P„,y0)=   P"y"  ,,   Lr"   ^  \mPn (32) 

and the eigenfunctions are given by 

Q(Am,x) = sin(Am x) 

a(0n,y) = sin(0ny) (33) 
K¥(r0,z) = sin(r0 r) 

with eigenvalues 

(2m-l) .      (2/j-l) (2o-l) .„ ,_.. 
*„,=—-—1*\   P^^—1*;   y0=^—Lx        ; m,n,o= 1,2,... (34) 

2o 2o 2c 

For the inverse problem considered here, the thermal conductivity components ku k2 and k3 

are regarded as unknown, while the other quantities appearing in the formulation of the direct 
problem described above are assumed to be known with high degree of accuracy. The vector of 
unknown parameters PT = [/q, k2 , k3] is estimated by using the Bayesian technique described 
next. 

Simulated temperature measurements, obtained with the solution of the direct problem with 
m = n = o = 50, were used in the inverse analysis. This number of terms in the series (4.a) was 
sufficient to achieve the desired convergence in the solution. In order to avoid the inverse crime 
of using the same solution of the direct problem in the generation of the simulated 
measurements and in the solution of the inverse problem [38], for the application of the 
Metropolis-Hastings algorithm we used m = n = o = 20 in the series-solution. The same 
optimally experimental variables selected in [41] were used here: for k-\ = 1, k2= 15 and k3- 15, 
we have b/a = c/a = q2/Qi = Q3/Q1 = 3.87 and the heating and final times were th = tf= ]. 

Results are presented below for the estimation of the thermal conductivity components PT = 
[/CL k2 , k3] with the Metropolis - Hastings algorithm, by using 20000 samples. A uniform 
distribution was used as prior information for the thermal conductivity components. The 
unknowns were assumed to be in the broad physically meaningful intervals given by: 
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0.1 < fc, < 50 0.1 < k2 < 50 0.1 < k3 < 50 

Notice that the prior distributions assumed for the parameters are non-informative, that is, 
the intervals in which the parameters are uniformly distributed encompass most of engineering 
materials, ranging from mild insulators to metals. Therefore, this represents a very difficult test 
case for the solution of the inverse problem, especially when it is taken into account that thermal 
conductivity values used to generate the simulated measurements are quite different in the 
three directions. 

Figures 26.a,b present the exact and estimated temperatures, as well as the simulated 
measurements, at the center of the heated surface at x = a, for standard deviations of the errors 
of a = 0.01 and a = 0.05, respectively. The estimated temperatures were obtained with the 
solution of the direct problem with the mean values estimated for the parameters. It should be 
noticed in figures 26.a,b that the estimated temperatures are in excellent agreement with the 
exact ones, even for very large measurement errors as for a- 0.05 (see figure 26.b). 

%ak**Qt^i^*, 

   Simulated Data - Errorless 
• Simulated Data Containing Random Errors 

— —   Estimated 

I ' I 
0.4 0.6 

Dimensionless time 
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   Simulated Data - Errorless 
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— —   Estimated 

0 8 

Dimensionless time 

Figure 26.a - Temperature at the center 
of the surface at x = a. Simulated 

measurements with standard deviation 
(7*0.01. 

Figure 26.b - Temperature at the center 
of the surface at x = a. Simulated 

measurements with standard deviation 
a= 0.05. 

Table 2. Results obtained with the MCMC method 

Standard Deviation for 
the measurements 

Parameter Mean Standard 
Deviation 

<7=0.01 fo 0.983 0.004 
fe 14.74 0.06 
fe 15.04 0.05 

<r= 0.05 *i 0.99 0.02 
k2 14.8 0.2 
kz 14.7 0.3 
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The mean values for the parameters, as well as their correspondent standard deviations 
were obtained from the posterior distribution generated with the Metropolis-Hastings algorithm 
(see table 2). This table shows that the MCMC Bayesian approach with the Metropolis-Hastings 
algorithm provided very accurate estimates for the unknown thermal conductivity components, 
even for very large magnitudes of the measurement errors, such as a= 0.05. As expected, the 
standard deviations of the estimated parameters increase with the magnitude of the 
measurement errors. 

The states of the Markov chain resulting from the application of the Metropolis-Hastings 
algorithm, for the cases with standard deviation of the measurement error of a= 0.05 show that 
the posterior distribution for the parameters after the Markov chain reaches equilibrium 
resembles that for a linear estimation problem, i.e., an ellipsoid. Such is the fact despite the 
non-linearity of the present estimation problem and is due to the use of optimized experimental 
variables in the estimation procedure [41]. A burn-in period is required for the MCMC to reach 
equilibrium, where the samples come from their starting states to gradually form the posterior 
distribution for the parameters. As expected, the posterior distribution is more spread for larger 
measurement errors which is apparent from the analysis of figures 27, which present the states 
of the Markov chain for each parameter (marginal distributions) for a- 0.05. The burn-in period 
for a = 0.01 was of the order of 4000 states, while for a = 0.05 the burn-in period was of the 
order of 2000 states. The mean values and the correspondent standard deviations shown in 
table 2 were computed by discarding the samples during the burn-in period. 

k, 

Figure 27 States of the Markov chain with standard deviation a- 0.05 for three conductivities. 

Although an order of magnitude computationally more expensive than Kalman filters, it is 
highly advisable to use MCMC with the Metropolis-Hastings algorithm especially when dealing 
with non-linear problems, since this approach offers higher accuracy and robustness. 
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1. Improvements to Single-Objective Constrained Predator-Prey Evolutionary Optimization 

Algorithm (with Chowdhury, S.), Structural and Multidisciplinary Optimization. 
2. Robustness, Accuracy and Efficiency of Different Response Surface Methods (with Colaco, 

M J., da Silva, W. B., and Magalhaes, A. O), AIAA Journal. 
3. Modified Predator-Prey Algorithm for Constrained and Unconstrained Multi-objective 

Optimization Problems (with Chowdhury, S. and Moral. R. J.), IEEE Transactions on 
Evolutionary Computation. 

4. Bayesian Estimation of the Thermal Conductivity Components of Orthotropic Solids (with 
Orlande, H. R. B. and Colaco, M. J.j, High Temperatures - High Pressures; International 
Journal of Thermophysical Properties Research. 

5. Evolutionary Wavelet Neural Network for Multidimensional Function Estimation in 
Optimization (with Sahoo, D.), Optimization Methods and Software. 

Ph.D. and M.Sc. Thesis Awarded During these Three Years: 
Ramon J. Moral: "Hybrid Multi-Objective Optimization and Hybridized Self-Organizing 

Response Surface Method", Ph.D. dissertation, Dept. of Mechanical and Materials Eng., 
Florida International University, Miami, FL, August 2008. 

Souma Chowdhury: "Modified Predator-Prey (MPP) Algorithm for Constrained Single -and 
Multi-Objective Optimization Problems", M.Sc thesis, Dept. of Mechanical and Materials 
Eng., Florida International University, Miami, FL, December 2008. 

Alexandre Aidov: "Modified Continuous Ant Colony Algorithm for Function Optimization", Dept. 
of Mechanical and Materials Eng., Florida International University, Miami, FL, August 2008. 

M.Sc. Thesis in Progress 
Ricardo Ardila: "Multi-Objective Optimization of Topology and Performance of Three- 

dimensional Networks of Cooling Passages", M.Sc. degree in Mechanical Engineering, 
Florida International University, Miami, FL, expected August 2009. 

Carlos Velez: "Comparative Multi-Objective Composition Optimization and Experimental 
Evaluation of Bulk Metallic Glasses", M.Sc. degree in Mechanical Engineering, Florida 
International University, Miami, FL, expected August 2009. 

Suvrat Bhargava: "Self Organizing Maps: Application to Multi-objective Optimization of 
Corrosion Resistant Aluminum Alloys", M.Sc. degree in Mechanical Engineering, Florida 
International University, Miami, FL, expected April 2010. 
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